OverFlow: Multi-Site Aware Big Data Management for Scientific Workflows on Clouds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data-aware Partitioning and Optimization Method for Large-scale Scientific Workflows in Hybrid Clouds

While hybrid cloud computing environments provide good potential for achieving high performance and low economic cost, it also introduces a broad set of unpredictable overheads especially for running data-intensive applications. This paper describes a novel approach which refines workflow structures and optimizes intermediate data transfers for largescale scientific workflows containing thousan...

متن کامل

Multi-objective scheduling of Scientific Workflows in multisite clouds

Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites (or data centers), each with its own resources and data. Thus, it becomes important to be able to execute some SWfs at more than one cloud site because of the geographical distribution of data or available resources among different cloud sites. Therefore, a major pr...

متن کامل

Data Locality-Aware Big Data Query Evaluation in Distributed Clouds

With more and more businesses and organizations outsourcing their IT services to distributed clouds for cost savings, historical and operational data generated by the services have been growing exponentially. The generated data that are referred to as big data, stored at different geographic datacenters, now become an invaluable asset to these businesses and organizations, as they can make use ...

متن کامل

The Need for Resilience Research in Workflows of Big Compute and Big Data Scientific Applications

Projections and reports about exascale failure modes conclude that we need to protect numerical simulations and data analytics from an increasing risk of hardware and software failures and silent data corruptions (SDC) [1, 4]. At this scale, hardware and software failures could be as frequent as ten or more per day. According to [9], the semiconductor industry will have increased difficulty pre...

متن کامل

Efficient Management of Geographically Distributed Big Data on Clouds

Nowadays cloud infrastructures allow storing and processing increasing amounts of scientific data. However, most of the existing large scale data management frameworks are based on the assumption that users deploy their data-intensive applications in single data center, few of them focus on the inter data centers data flows. Managing data across geographically distributed data centers is not tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Cloud Computing

سال: 2016

ISSN: 2168-7161

DOI: 10.1109/tcc.2015.2440254